What’s New in the Patient Safety World

August 2016



·         Guideline Update for Pediatric Sedation

·         Some Reassurance on Antibiotic Stewardship

·         Hand Hygiene: Who’s Watching? Does it Matter?

·         Home Infusion Therapy Pitfalls


Guideline Update for Pediatric Sedation



Our March 15, 2016 Patient Safety Tip of the Week “Dental Patient Safety” noted numerous cases of death related to sedation in dental practices. The majority of those cases occurred in pediatric patients. A recent article in Anesthesiology News (Kronemyer 2016) noted that a KVUE TV “Defenders” investigation (Pierrotti 2016) identified at least 85 patients in Texas who died shortly following dental procedures from 2010 to 2015. The Kronemyer article also notes that the American Dental Association (ADA) guidelines on sedation do not specifically address pediatric dental issues and that statewide regulations regarding dental sedation and anesthesia vary widely. That article notes that the ADA defers to the American Academy of Pediatrics (AAP)/American Academy of Pediatric Dentistry (AAPD) “Guideline for Monitoring and Management of Pediatric Patients During and After Sedation for Diagnostic and Therapeutic Procedures.” Fortunately, the latter guideline has just been updated (Coté 2016).


The updated guideline, which applies to not just dental procedures but to sedation for all procedures, notes that children under the age of 6 years (and especially those under the age of 6 months) are particularly likely to suffer adverse events during sedation. It emphasizes that there is a very narrow margin in children between the intended level of sedation and much deeper sedation or anesthesia. Therefore, the practitioner must be trained not only in moderate sedation but must have the skills to rescue patients from such deeper levels. That would include the need for maintenance of the skills needed to rescue a child with apnea, laryngospasm, and/or airway obstruction, include the ability to open the airway, suction secretions, provide continuous positive airway pressure (CPAP), perform successful bag-valve-mask ventilation, insert an oral airway, a nasopharyngeal airway, or a laryngeal mask airway (LMA), and, rarely, perform tracheal intubation. The guidelines note these skills are likely best maintained with frequent simulation and team training for the management of rare events. The guideline has specific recommendations for when the intended level of sedation is minimal, moderate, deep or general sedation.


The updated guideline emphasizes the role of capnography in appropriate physiologic monitoring and continuous observation by personnel not directly involved with the procedure to facilitate accurate and rapid diagnosis of complications and initiation of appropriate rescue interventions. You’ll recall from our March 15, 2016 Patient Safety Tip of the Week “Dental Patient Safety” that many of the fatalities following sedation for dental procedures had the dentist or oral surgeon both doing the procedure and monitoring the patient.


Patient safety considerations for procedural sedation begin in advance of the procedure. There should be a careful preprocedure review of the patient’s underlying medical conditions and consideration of how the sedation process might affect or be affected by such conditions. The guideline specifically mentions that children with developmental

disabilities have been shown to have a threefold increased incidence of desaturation compared with children without developmental disabilities.


The SOAPME mnemonic is used to help teams remember all the equipment and supplies needed for conduct of safe sedation:

S          Suction

O         Oxygen; an adequate reserve supply

A         Airway; size-appropriate equipment to manage a nonbreathing child

P          Pharmacy; drugs needed to support life and appropriate reversal agents

M        Monitors; size-appropriate oximeter probes/monitors appropriate for procedure

E         Equipment; a defibrillator with appropriately sized pads


Without going into details about specific drugs, the guideline notes the importance of selecting the lowest dose of drug with the highest therapeutic index for the procedure. That choice should also depend on whether the procedure is expected to be a painful or non-painful procedure. Knowledge about the duration of action of the drugs is important in informing how long a patient needs to be monitored after the procedure. That is especially important when combinations of drugs are being used (eg. a sedating agent and an analgesic or anxiolytic agent).


The guideline has specific recommendations for when the intended level of sedation is minimal, moderate, deep or general sedation. One critical point that should be of particular concern for dental practices, is that use of moderate or deeper sedation shall include the provision of a person, in addition to the practitioner, whose responsibility is to monitor appropriate physiologic parameters and to assist in any supportive or resuscitation measures. While that individual might also be responsible for assisting with interruptible patient-related tasks of short duration, such as holding an instrument or troubleshooting equipment, the primary role of that individual is monitoring the patient. For deep sedation the sole role of the support individual is to monitor the patient. In either case that individual should be trained in and capable of providing advanced airway skills (eg, PALS) and shall have specific assignments in the event of an emergency and current knowledge of the emergency cart/kit inventory.


Monitoring is critical and should include the level of patient’s ability to communicate (where assessable), heart rate, respiratory rate, blood pressure, oxygen saturation, and expired carbon dioxide values (via capnography) should be recorded, at minimum, every 10 minutes in a time-based record. The guideline stresses use of capnography but acknowledges that it may not be able to be used in some procedures around the face, including many dental procedures.


The guideline discusses the needs for the emergency cart/kit and backup emergency services access and availability.


The guideline has a good discussion about the use of immobilization devices, such as the “papoose” boards we mentioned in our March 15, 2016 Patient Safety Tip of the Week “Dental Patient Safety”. Such must be applied in such a way as to avoid airway obstruction or chest restriction and the child’s head position and respiratory excursions should be checked frequently to ensure airway patency. If an immobilization device is used, a hand or foot should be kept exposed, and the child should never be left unattended.


The guideline discusses what should be documented before, during, and after a procedure in which sedation is used and notes the importance of careful attention to calculating doses of drugs or infusions based on patient weight.


The guideline has a good discussion about discharge of the pediatric patient following a procedure in which sedation is used. It specifically highlights the dangers when a child is transported in a car seat where there is a need to carefully observe the child’s head position to avoid airway obstruction. Transportation in a car safety seat poses a particular risk for infants who have received medications known to have a long half-life. When there is only one adult to both drive and observe the child, there should be a longer period of observation in the facility where the procedure occurred. Discharge instructions should include details about what to look for, activity levels, dietary restrictions, and include a 24-hour phone number to call if necessary.


And while we have been emphasizing the application of the guideline to dental procedures, remember it applies to all diagnostic and therapeutic procedures. It has an excellent section on sedation in the MRI suite, which is a very restricted environment and has needs for special equipment and monitoring techniques as we have discussed in our numerous columns on patient safety issues in the radiology and MRI suites.



This guideline was extremely well researched, with almost 500 references including the most up-to-date studies and reports. The authors have produced very valuable recommendations that should improve the safety of children undergoing sedation for procedures in a variety of settings. You’ll find this very useful.









Kronemyer B. Deaths of Children During Dental Procedures Raise Safety Concerns. Anesthesiology News 2016; June 30, 2016




Pierrotti A. Defenders: Investigating Dental Deaths. KVUE 2016; April 28, 2016




Coté CJ, Wilson S, American Academy of Pediatrics, American Academy of Pediatric Dentistry. Guidelines for Monitoring and Management of Pediatric Patients Before, During, and After Sedation for Diagnostic and Therapeutic Procedures: Update 2016. Pediatrics 2016; 138(1): e2016121







Print “August 2016 Guideline Update for Pediatric Sedation






Some Reassurance on Antibiotic Stewardship



Last month we discussed new guidelines on antibiotic stewardship (see our July 2016 What's New in the Patient Safety World column “NQF/CDC Guideline on Antibiotic Stewardship”) and in our several other prior columns on antibiotic stewardship listed below we’ve noted the overprescription of antibiotics for inappropriate indications, both in hospitals and ambulatory settings.


One such category where inappropriate antibiotic prescribing is rampant is the upper respiratory tract infection (RTI) that is usually self-limited and many of which are caused by viruses so are not amenable to antibiotic treatment. Many primary care practitioners remain concerned that failure to use antibiotics in such cases may lead to adverse consequences in their patients. They often have the impression that the primary reason for avoiding antibiotic prescribing is to prevent development of antibiotic-resistant organisms and that such concern applies to populations rather than to their individual patients. In fact, that’s not true as we discussed in our November 2015 What's New in the Patient Safety World column “Medications Most Likely to Harm the Elderly Are…” that the medications most likely to harm the elderly are antibiotics.


But it would be reassuring to see a study showing that avoidance of antibiotics in such cases is, in fact, safe. So a recent study done in 601 general practices in the UK provides such welcome reassurance. Researchers used data from the UK Clinical Practice Research Datalink (Gulliford 2016). They found that general practices that adopt a policy to reduce antibiotic prescribing for RTIs might expect a slight increase in the incidence of treatable pneumonia and peritonsillar abscess. However, there was no increase likely in mastoiditis, empyema, bacterial meningitis, intracranial abscess, or Lemierre’s syndrome.

They estimate that if a general practice with an average list size of 7000 patients reduces the proportion of RTI consultations with antibiotics prescribed by 10%, then it might observe 1.1 more cases of pneumonia each year and 0.9 more cases of peritonsillar abscess each decade. They conclude that even a substantial reduction in antibiotic prescribing was predicted to be associated with only a small increase in numbers of cases observed overall, but caution might be required in subgroups at higher risk of pneumonia.


An accompanying editorial (Del Mar 2016) also finds some reassurance in these findings. Some rapid response letters (Rapid Response 2016) note the importance of adequate early followup and cooperation of parents when treating pediatric patients. But another of the rapid response letters reveals a critical root cause of overprescribing antibiotics – the already harried general practitioner fears his workday will become overburdened by patients returning for an additional evaluation.


In our July 2016 What's New in the Patient Safety World column “NQF/CDC Guideline on Antibiotic Stewardship”) we noted that CMS has announced that hospitals will be required to have antibiotic stewardship programs and demonstrate that they have reduced inappropriate antibiotic usage (CMS 2016). Now The Joint Commission has also revised its standard regarding antibiotic stewardship, effective January 1, 2017 (TJC, 2016).


Elements of the new TJC standard for include:

  1. Establishing antimicrobial stewardship as an organizational priority
  2. Educating staff and practitioners involved in ordering, dispensing and monitoring antibiotics about antibiotic resistance and good stewardship practices both at the time of hiring or credentialing and periodically thereafter
  3. Educating patients and families about appropriate use of antimicrobials
  4. Establishing an antimicrobial stewardship team, including an infectious disease physician, infection preventionist(s), pharmacist(s), and practitioner(s) (note that they will allow part-time staff and even telemedicine consultants to fulfill some of the roles)
  5. Ensuring the core elements of a good antibiotic stewardship program are in place (see below)
  6. Ensuring the antimicrobial stewardship program uses organization-approved multidisciplinary protocols (for example, policies and procedures for things like formulary restrictions, C. diff treatment, parenteral to oral conversion, appropriateness of antibiotics for community acquired pneumonia, etc.)
  7. Gathering, analyzing and reporting data on the program
  8. Takes action on improvement opportunities identified in its antimicrobial stewardship program


As a reminder, the seven CDC-defined core elements (CDC 2016) of a comprehensive antibiotic stewardship program are:

  1. Leadership Commitment: Dedicate necessary human, financial, and information technology resources.
  2. Accountability: Appoint a single leader responsible for program outcomes who is accountable to an executive-level or patient quality-focused hospital committee. Experience with successful programs shows that a physician leader is effective.
  3. Drug Expertise: Appoint a single pharmacist leader responsible for working to improve antibiotic use.
  4. Action: Implement at least one recommended action, such as systemic evaluation of ongoing treatment need after a set period of initial treatment (i.e., “antibiotic time out” after 48 hours).
  5. Tracking: Monitor process measures (e.g., adherence to facility-specific guidelines, time to initiation or de-escalation), impact on patients (e.g., Clostridium difficile infections, antibiotic-related adverse effects and toxicity), antibiotic use, and resistance.
  6. Reporting: Report the above information regularly to doctors, nurses, and relevant staff.
  7. Education: Educate clinicians about disease state management, resistance, and optimal prescribing.


The TJC prebulication document also provides links to some useful tools, such as materials for educating patients and their families



See our columns listed below for ways to deal with the problem of inappropriate antibiotic prescribing and antibiotic stewardship programs both in the hospital and the ambulatory setting.



Some of our prior columns on antibiotic stewardship:







Gulliford MC, Moore MV, Little P, et al. Safety of reduced antibiotic prescribing for self limiting respiratory tract infections in primary care: cohort study using electronic health records. BMJ 2016; 354: i3410 (Published 04 July 2016)




Del Mar C. Antibiotics for acute respiratory tract infections in primary care. BMJ 2016; 354: i3482 (Published 05 July 2016)




Rapid Responses. Antibiotics for acute respiratory tract infections in primary care. BMJ 2016; 354: i3482 (Published 05 July 2016)




CMS (Centers for Medicare & Medicaid Services). CMS Issues Proposed Rule that Prohibits Discrimination, Reduces Hospital-Acquired Conditions, and Promotes Antibiotic Stewardship in Hospitals. June 13, 2016




TJC (The Joint Commission). New Antimicrobial Stewardship Standard (Prepublication Requirements). June 24, 2016




CDC (Centers for Disease Control and Prevention). Core Elements of Hospital Antibiotic Stewardship Programs. Page last updated: May 25, 2016







Print “August 2016 Some Reassurance on Antibiotic Stewardship






Hand Hygiene: Who’s Watching? Does it Matter?



Two recent studies suggest that hand hygiene compliance rates are overestimated when healthcare workers know they are being observed. The first, a California medical center study presented at the 43rd Annual Conference of the Association for Professionals in Infection Control and Epidemiology (APIC), found a difference of more than 30 percent in hand hygiene compliance depending on whether or not they recognized the auditors (APIC 2016a). The Hawthorne effect, very loosely applied to imply that behavior changes when subjects know they are being observed (our apologies to purists who will state that is not the actual phenomenon observed at Western Electric), appears to result in an overestimate of compliance with hand hygiene.


The second study, done in Canada, also showed a disparity between healthcare worker compliance with hand hygiene observed covertly compared to reporting by staff observers (Kovacs-Litman 2016). Moreover, there may be a disparity in the phenomenon between physicians and nurses. Canadian researchers trained students to covertly observe hand hygiene compliance and compared their assessments with the formal compliance assessments done by hospital staff. The covert observers noted hand hygiene compliance to be 50% compared to 83.7% reported by the hospital staff. For physicians compliance reported by hospital auditors and covert observers, respectively, was 73.2% vs 54.2%, whereas for nurses compliance reported by hospital auditors and covert observers, respectively, was 85.8% vs 45.1%.


Importantly, as we’ve often pointed out, the behavior of the head of the team significantly influences the behavior of all the others. The researchers noted that physician trainees had much better hand hygiene compliance when their attendings cleaned their hands than when they did not (79.5% vs. 18.9%).


Meanwhile, many hospitals have begun to use electronic monitoring of hand hygiene compliance even though this technology has not yet been shown to substantially reduce hospital infections. But a new study (Kelly 2016), analyzing data from 23 inpatient units over a 33-month period found a significant correlation between unit-specific improvements in electronic monitoring compliance and reductions in methicillin-resistant Staphylococcus aureus infection rates.


Another study presented at the recent APIC Annual Conference found that showing hospital staff enlarged images of bacterial cultures similar to those they might have on their hands increased compliance with hand hygiene by 11-46% (APIC 2016b).


Of course, the attending physician serving as a role model for hand hygiene and the use of visual imagery to promote hand hygiene are forms of “nudges” (see our July 7, 2009 Patient Safety Tip of the Week “Nudge: Small Changes, Big Impacts”). In our April 2016 What's New in the Patient Safety World column “Nudge: An Example for Hand Hygiene” we cited an article that showed location of hand sanitizers significantly influenced their use by visitors (Hobbs 2016). The key finding was that when the hand sanitizers were placed in the middle of the lobby (with limited landmarks or barriers) visitors were 5.28 times more likely to use them.


So how about locating hand sanitizers right on healthcare workers? Researchers at Darthmouth-Hitchcock Medical Center and UMass Memorial Medical Center did just that (Koff 2016). They randomly assigned operating room environments to usual intraoperative hand hygiene or to a personalized, body-worn hand hygiene system. They found an 8-fold increase in anesthesia and circulating nurse provider hand decontamination events above that of conventional wall-mounted devices. However, use of the hand hygiene system was not associated with a reduction in healthcare-associated infections.


Improving hand hygiene compliance rates remains a frustratingly difficult endeavor in most healthcare facilities. But we can all learn from successes elsewhere. Every little bit helps.



Some of our other columns on handwashing and hand hygiene:



January 5, 2010           How’s Your Hand Hygiene?

December 28, 2010     HAI’s: Looking In All The Wrong Places

May 24, 2011              Hand Hygiene Resources

October 2011              Another Unintended Consequence of Hand Hygiene Device?

March 2012                 Smile…You’re on Candid Camera

August 2012               Anesthesiology and Surgical Infections

October 2013              HAI’s: Costs, WHO Hand Hygiene, etc.

November 18, 2014    Handwashing Fades at End of Shift, ?Smartwatch to the Rescue

January 20, 2015         He Didn’t Wash His Hands After What!

September 2015          APIC’s New Guide to Hand Hygiene Programs

November 2015          Hand Hygiene: Paradoxical Solution?

April 2016                   Nudge: An Example for Hand Hygiene







APIC (Association for Professionals in Infection Control and Epidemiology). The Hawthorne Effect hinders accurate hand hygiene observation, study says. APIC News Release 2016; June 10, 2016




Kovacs-Litman A, Wong K, Shojania KG, et al. Do physicians clean their hands? Insights from a covert observational study. J Hosp Med 2016; Early View 5 July 2016




APIC (Association for Professionals in Infection Control and Epidemiology). Seeing is believing: Visual triggers increase hand hygiene compliance. APIC News Release 2016; June 9, 2016




Hobbs MA, Robinson S, Neyens DM, Steed C. Visitor characteristics and alcohol-based hand sanitizer dispenser locations at the hospital entrance: Effect on visitor use rates.

Am J Infection Contol 2016; 44(3): 258-262




Koff MD, Brown JR, Marshall EJ, et al. Frequency of Hand Decontamination of Intraoperative Providers and Reduction of Postoperative Healthcare-Associated Infections: A Randomized Clinical Trial of a Novel Hand Hygiene System. Infect Control Hosp Epidemiol 2016; 1-8 Published onlne June 7, 2016




Kelly JW, Blackhurst D, McAtee W, Steed C. Electronic hand hygiene monitoring as a tool for reducing health care–associated methicillin-resistant Staphylococcus aureus infection. Am J Infect Control 2016; Published online: June 23, 2016







Print “August 2016 Hand Hygiene: Who’s Watching? Does it Matter?






Home Infusion Therapy Pitfalls



We’ve done several columns (listed below) on the dangers of home infusion therapy for cancer chemotherapy agents. In most cases the dangers have arisen when an agent intended to be infused over several days is instead infused over several hours, leading to toxicity and, in some cases, death.


But cancer chemotherapy is not the only type of home infusion therapy that may be dangerous. ISMP Canada (ISMP Canada 2016) recently did a column about a fatal case related to intravenous vancomycin therapy in the home but their excellent recommendations apply to almost any type of home infusion therapy.


The case described was a diabetic patient with a foot ulcer who was receiving IV vancomycin at home after a hospital stay. Recommended bloodwork, including trough vancomycin levels, was not done due to a faulty lab requisition. The patient developed a rash, thrombocytopenia, and high serum vancomycin levels as well as rising creatinine. He was rehospitalized but despite IV fluids and platelet transfusions, he developed hypertensive episodes, epistaxis and mental status changes and developed intracerebral bleeding and ultimately died. The acute kidney injury was attributed to vancomycin toxicity and the thrombocytopenia was also felt possibly related to the vancomycin.


ISMP Canada makes recommendations that are appropriate not only for home vancomycin infusions but also for any drug requiring therapeutic drug monitoring. Good planning prior to discharge is critical. The prescriber should decide whether an oral agent or an intravenous agent not requiring therapeutic drug monitoring might be an alternative therapy. The team should determine whether all the treatment and monitoring needs can, in fact, be met with homecare (as opposed to followup in a hospital ambulatory setting or continued inpatient admission). They should liaise with the most responsible health care provider who will be responsible for ongoing monitoring and assessment of the patient in the community prior to the patient’s discharge. Copies of any laboratory requisitions and any special instructions should be provided. Prescriptions and completed laboratory requisitions should be provided and they recommend avoiding Friday bloodwork since results may be delayed over weekends or holidays. Particularly important with potentially nephrotoxic drugs like vancomycin is a review and possible adjustment of any concomitant medications that might promote nephrotoxicity. The latest bloodwork should be reviewed before administering each dose of the drug. In addition to discussing the care plans with the home health agencies and/or community pharmacists, it is important that the patient or family be educated on the importance of getting the bloodwork done and what signs or symptoms should raise concerns. Hospital pharmacists familiar with the therapeutic drug monitoring should be part of the discharge team and may serve as the liaison with community pharmacists where appropriate.


The article also has a link to ISMP Canada’s transitions toolkit and checklist, a very valuable resource for facilitating safe discharge of patients.


But what happens at home is not the only problem with home infusion. ISMP (US) notes that home infusion therapies may also give rise to problems when such patients are admitted to hospitals or emergency departments (ISMP 2015). ISMP notes that patient safety can be jeopardized if the devices are mishandled when filling, programming, attaching, and monitoring the pumps and that the ambulatory pump marketplace is diverse, so the devices rarely have standard components. Therefore, serious errors can occur when healthcare providers are not familiar with these ambulatory pumps. The classic problematic one is the insulin pump, as we’ve described in several columns, because the vast majority of healthcare workers are not familiar with its use. Healthcare workers may not know whether the pump is functioning properly nor how to get replacement parts or batteries. There have also been cases where a physician orders and a nurse gives a dose of insulin after a patient has administered a dose without telling them. Every hospital should have a team headed by an endocrinologist who can manage insulin pumps in the hospital. That may be a challenge for rural hospitals, though use of telemedicine may help.



Our prior columns related to chemotherapy safety:




Some of our prior columns on medication errors in other ambulatory settings:

June 12, 2007              Medication-Related Issues in Ambulatory Surgery

August 14, 2007         More Medication-Related Issues in Ambulatory Surgery

March 24, 2009           Medication Errors in the OR

October 16, 2007        Radiology as a Site at High-Risk for Medication Errors

January 15, 2008         Managing Dangerous Medications in the Elderly

April 2010                   Medication Incidents Related to Cancer Chemotherapy

September 2010          Beers List and CPOE

October 19, 2010        Optimizing Medications in the Elderly

April 12, 2011             Medication Issues in the Ambulatory Setting

June 2012                    Parents' Math Ability Matters

May 7, 2013                Drug Errors in the Home

May 5, 2015                Errors with Oral Oncology Drugs

September 15, 2015    Another Possible Good Use of a Checklist

February 2016             Avoiding Methotrexate Errors

April 19, 2016             Independent Double Checks and Oral Chemotherapy

June 21, 2016              Methotrexate Errors in Australia







ISMP Canada. Gaps in Transition: Management of Intravenous Vancomycin Therapy in the Home and Community Settings. ISMP Canada Safety Bulletin 2016; 16(4): 1-5 June 28, 2016




ISMP Canada. Hospital to Home - Facilitating Medication Safety at Transitions. A Toolkit and Checklist for Healthcare Providers.




ISMP (Institute for Safe Medication Practices). Ambulatory pump safety: Managing home infusion patients admitted to the ED and hospital. ISMP Medication Safety Alert! Acute Care Edition 2015; September 10, 2015







Print “August 2016 Home Infusion Therapy Pitfalls





Print “August 2016 What's New in the Patient Safety World (full column)

Print “August 2016 Guideline Update for Pediatric Sedation

Print “August 2016 Some Reassurance on Antibiotic Stewardship

Print “August 2016 Hand Hygiene: Who’s Watching? Does it Matter?

Print “August 2016 Home Infusion Therapy Pitfalls






Print “PDF version










Tip of the Week Archive


What’s New in the Patient Safety World Archive