What’s New in the Patient Safety World

December 2014



·         I-PASS Passes the Test

·         Surprise Central Lines

·         American Geriatrics Society Guideline on Postoperative Delirium in Older Adults

·         Oxygen Should Be AVOIDed

·         Another Procedure to Avoid Late in the Day or on Weekends




I-PASS Passes the Test



Amongst our numerous columns on handoffs/handovers (see the full list of prior columns at the end of today’s column) we’ve especially been fond of the I-PASS handoff program. We first described it in our February 14, 2012 Patient Safety Tip of the WeekHandoffs – More Than Battle of the Mnemonics”, a column that highlighted the need to tailor handoff formats to the specific tasks at hand. I-PASS came about because existing formats were not optimal for resident-to-resident handoffs. Then in our June 2012 What’s New in the Patient Safety World column “I-PASS Results and Resources Now Available” we noted the release of the very promising preliminary results of the I-PASS project.


Now the final results of the I-PASS project have been published (Starmer 2014). After implementation of I-PASS the rate of medical errors decreased by 23% and the rate of preventable medical errors decreased by 30%. Significantly, there was no increase in the amount of time spent on handoffs and there was no significant change in resident workflow or the amount of resident contact with patients and families.


Specific medical error types reduced in the I-PASS collaborative included diagnostic errors, errors related to medical history or physical examination, multifactorial errors, and errors related to therapies other than medications or procedures. (Errors related to medications, procedures, falls, and nosocomial infections did not change.)


The reduction in medical errors was significant at six of the nine sites participating. Study authors had no explanation for the lack of improvement at three sites, since they also demonstrated improved inclusion of key elements in the handoff process.


Make no mistake, I-PASS is much more than a mnemonic and format for handoffs. It also involves extensive team training (based on TeamSTEPPS™) and resident training modules, simulation and role playing, faculty development resources and tools, direct observation of handoffs with feedback, and generation of a printed handoff document that can be integrated with the electronic medical record.


In our September 9, 2014 Patient Safety Tip of the Week “The Handback” we noted that a recent collaboration among 23 pediatric hospitals (Bigham 2014) demonstrated a significant decrease in handoff-related are failures for multiple different handoff types. I-PASS was a format utilized in that collaboration. The improvement project was guided by evidence-based recommendations regarding handoff intent and content, standardized handoff tools/methods, and clear transition of responsibility. Hospitals tailored handoff elements to locally important handoff types. Examples of the handoff types included shift-to-shift handoffs, emergency department to inpatient handoffs, and perioperative to inpatient handoffs. Handoff-related care failures decreased from 25.8% at baseline to 7.9% in the final intervention period.


Compliance to critical components of the handoff process improved, as did provider satisfaction. Key elements required, regardless of the handoff type, were that active participation by both the sending and receiving teams were required, discrete times

and mechanisms set aside for the receiving team to ask questions, a proscribed script of important handoff elements was available, and a “read back” summary of basic issues and next steps was accessible. One very interesting finding was that even where baseline compliance with individual elements was pretty good at baseline, relatively small incremental improvements in those individual elements collectively led to very good reductions in overall handoff failures.


Details on the format of I-PASS and reasons for its development can be found in our February 14, 2012 Patient Safety Tip of the WeekHandoffs – More Than Battle of the Mnemonics” and June 2012 What’s New in the Patient Safety World column “I-PASS Results and Resources Now Available” as well as in the current article (Starmer 2014) and the I-PASS website.


Though restrictions on hours that residents may work have increased the number and complexity of handoffs/handovers, most of the same issues apply to other physician coverage arrangements. Yes, one resident just finishing a 24-hour shift may have to leave immediately after morning rounds. But a physician in a community or rural hospital who is covering for another physician also has competing requirements for his/her time (eg. office hours, scheduled surgery, etc.). And the same types of interruptions and distractions (phone calls, pages, nurses or colleagues or families requesting information, etc.) apply equally well to morning rounds or the physician cross-coverage handback.


Though neither the I-PASS collaborative nor the previously mentioned pediatric collaborative (Bigham 2014) looked at the impact of the missed handoff issues on patient harm or actual patient outcomes, we would certainly predict that improvement in the handback process would likely prevent many adverse events and outcomes. Both are very good studies and have implications for all healthcare organizations, not just academic ones.




Read about many other handoff issues (in both healthcare and other industries) in some of our previous columns:


May 15, 2007              Communication, Hearback and Other Lessons from Aviation

May 22, 2007              More on TeamSTEPPS™

August 28, 2007         Lessons Learned from Transportation Accidents

December 11, 2007     Communication…Communication…Communication

February 26, 2008       Nightmares….The Hospital at Night

September 30, 2008     Hot Topic: Handoffs

November 18, 2008     Ticket to Ride: Checklist, Form, or Decision Scorecard?

December 2008            Another Good Paper on Handoffs”.

June 30, 2009               iSoBAR: Australian Clinical Handoffs/Handovers

April 25, 2009             Interruptions, Distractions, Inattention…Oops!

April 13, 2010             Update on Handoffs

July 12, 2011               Psst! Pass it on…How a kid’s game can mold good handoffs

July 19, 2011               Communication Across Professions

November 2011           Restricted Housestaff Work Hours and Patient Handoffs

December 2011            AORN Perioperative Handoff Toolkit

February 14, 2012       Handoffs – More Than Battle of the Mnemonics

March 2012                 More on Perioperative Handoffs

June 2012                    I-PASS Results and Resources Now Available

August 2012               New Joint Commission Tools for Improving Handoffs

August 2012                Review of Postoperative Handoffs

January 29, 2013         A Flurry of Activity on Handoffs

December 10, 2013     Better Handoffs, Better Results

February 11, 2014       Another Perioperative Handoff Tool: SWITCH

March 2014                  The “Reverse” Perioperative Handoff: ICU to OR

September 9, 2014      The Handback








Starmer AJ, Spector ND, Srivastava R, et al. Changes in Medical Errors after Implementation of a Handoff Program. N Engl J Med 2014; 371: 1803-1812




Bigham MT, Logsdon TR, Manicone PE, et al. Decreasing Handoff-Related Care Failures in Children’s Hospitals. Pediatrics 2014; 134:2 e572-e579; published ahead of print July 7, 2014,




I-PASS Study website.







Print “December 2014 I-PASS Passes the Test





Surprise Central Lines



One of our earliest Patient Safety Tips of the Week was our May 8, 2007 column Doctor, when do I get this red rubber hose removed?”. In that column we related how embarrassed we were as a young physician when a patient asked that question as we were providing discharge instructions to her. That led us to one of our first patient safety projects in the early 1990’s to reduce the unnecessary use of urinary catheters. Of course, the most important intervention to avoid CAUTI’s is to avoid such catheters in the first place and limit duration of catheters in those patients who do have a legitimate initial indication for one. We were amazed at how often the Foley catheter appears unbeknownst to the primary physician responsible for the patient’s care and how often they are placed without legitimate medical indication.


The same obviously applies to indwelling catheters in any area of the body. The great work done by Peter Pronovost and colleagues on prevention of CLABSI’s emphasized careful attention not just to insertion and maintenance of central lines but also to the issue of indications or continued indications for the central lines.


Now a new study assessed how often clinicians are unaware of central venous catheters, both traditional triple-lumen catheters and PICC (peripherally inserted central catheter) lines, at 3 academic medical centers (Chopra 2014). In almost 1000 patients the prevalence of a triple-lumen central venous catheter or PICC line was 21.1% (60% if these were PICC’s). Clinicians responsible for care of those patients were unaware of the presence of these catheters in 21.2% of cases. Such unawareness was more common for PICC lines and more common in non-ICU settings. Teaching attendings and hospitalists were more often unaware than were housestaff or physician extenders.


Our January 21, 2014 Patient Safety Tip of the Week “The PICC Myth” focused on the widespread use of PICC lines and the general lack of awareness by clinicians of their potential complications. Previous work by Chopra and colleagues as well as others has shown potential complications of PICC lines are at least as frequent as and probably more frequent than those from more traditional central lines. Complications include CLABSI’s, deep vein thrombosis, catheter tip malpositioning, thrombophlebitis, and catheter dysfunction. Both patient-related and device-related factors are important in leading to complications of central lines and PICC lines. But it is clear that the duration of catheter use is an important factor in leading to complications and that many times the catheters are left in place longer than necessary.


One of the most important interventions in prevention of CLABSI’s (or, for that matter, infection of any indwelling device) is asking on a daily basis whether the catheter is still necessary. With PICC’s we often forget to do that, particularly when the patient is not in the ICU. In that January 21, 2014 Patient Safety Tip of the Week “The PICC Myth” we noted a study by Tejedor and colleagues (Tejedor 2012) looking at how often central venous catheters and PICC lines were retained when not needed ("idle days") on non-ICU wards. They found that significant proportions of ward central line days were unjustified.  Patients with PICCs had more days in which the only justification for the CVC was intravenous administration of antimicrobial agents. They suggest that reducing "idle CVC-days" and facilitating the appropriate use of peripheral IV’s may reduce central line days and CLABSI risk.


Also in that January 21, 2014 Patient Safety Tip of the Week “The PICC Myth” we stressed how our systems make it very easy for a patient to get a PICC line, often for reasons of staff convenience rather than for evidence-based indications. Sometimes they are ordered at night by a cross-covering physician. And since most PICC lines are inserted by specially trained nurses, most physicians are not involved in insertion of the PICC. So it’s fairly easy to be unaware of a PICC line. We’re not at all surprised by the findings of the current Chopra study.


The editorial accompanying the Chopra study (Taichman 2014) questions that, if we are not seeing catheters when we round on our patients daily, “what else are we missing?”. Is it that we are doing perfunctory exams on such rounds or not even doing that? Are we missing things like early decubiti?


The bottom line is that we are all human and we tend to look for things we expect or things we are trying to avoid. If we are not expecting our patient to have a central line or PICC line we may easily overlook its presence when we are rounding. This might even be another example of “inattentional blindness”.


Therefore, we need to include such oversight as another example of a predictable error and put systems in place to help us avoid the problem. One of the items on our checklist for daily rounds on patients in all locations should be “Does this patient have any catheters or lines in place and, if so, are they still necessary?” Use of such lines should be evidence-based where possible. Alert fatigue aside, we also recommend that flags be set in the electronic medical record (EMR) to highlight for the clinician that such catheters are in place and need to be reviewed for continuation on a daily basis.







Chopra V, Govindan S, Kuhn L, et al. Do Clinicians Know Which of Their Patients Have Central Venous Catheters?: A Multicenter Observational Study. Ann Intern Med 2014; 161(8): 562-567




Tejedor SC, Tong D, Stein J, et al. Temporary central venous catheter utilization patterns in a large tertiary care center: Tracking the "Idle central venous catheter". Infection Control and Hospital Epidemiology 2012; 33(1): 50-57




Taichman DB. Whose Line Is It Anyway? Ann Intern Med 2014; 161(8): 607-608






Print “December 2014 Surprise Central Lines





American Geriatrics Society Guideline on Postoperative Delirium in Older Adults



Of our many columns on recognition, diagnosis, prevention and management of delirium (see the full list at the end of today’s column) postoperative delirium has been a major focus.


The American Geriatrics Society has just published a best practice statement for Postoperative Delirium in Older Adults (AGS Expert Panel 2014). It’s a guideline that really only recommends evidence-based best practices.


The guideline notes that between 5% and 50% of older adults develop delirium after surgery and that delirium may be preventable in up to 40% of cases. Yet the topic of delirium has been under-represented in surgical teaching. So this guideline/best practice statement is of significant importance since it is published in the Journal of the American College of Surgeons.


It emphasizes that delirium is a relationship between a physiologic stressor (in this case the surgery) and predisposing risk factors. Major risk factors listed are age > 65, chronic cognitive decline or dementia, poor vision or hearing, severe illness, presence of infection, functional dependence, self-reported alcohol abuse, and specific laboratory/electrolyte abnormalities. It notes that patients having 2 or more risk factors are at greater risk and that the risk for delirium is generally greater in the emergency setting.


The guideline notes that healthcare professionals caring for postsurgical patients must be trained to recognize and document the signs and symptoms of delirium, including hypoactive delirium. When a screening tool suggests delirium a healthcare professional competent in diagnosing delirium should perform a full clinical assessment. It emphasizes, as we have, that patients undergoing elective procedures should have baseline assessments of cognitive function pre-operatively. The guideline has multiple tables and appendices covering things like risk factors, symptoms and signs, screening tools, and diagnostic tools. It recommends that the healthcare team consider instituting daily postoperative screening of older patients for delirium.


The guideline notes there is a dearth of solid evidence about specific intraoperative factors in the prevention of postoperative delirium. In fact, the only recommendation is that the anesthesiology practitioner may use processed EEG monitors of anesthetic depth (eg. Bispectral Index) during sedation or general anesthesia of older patients to reduce postoperative delirium.


The next section focuses on medications that commonly induce delirium, especially anticholinergic drugs, sedative/hypnotics, meperidine, diphenhydramine, and benzodiazepines. Also, use of 5 or more total medications is associated with an increased risk of delirium. It emphasizes that management must be individualized. For example, while benzodiazepines should be avoided in most at-risk patients they may be necessary in a patient with a history of alcohol or benzodiazepine dependence.


The guideline has an excellent focus on pain and pain management. Insufficient pain control can contribute to delirium as can some of the medications used to treat pain. The guideline recommends non-opioid analgesics where possible and notes that use of regional anesthesia has been found to reduce delirium in some studies.


The guideline points out the contradictory evidence on the effect of antipsychotics in preventing delirium and does not recommend their use for prevention. It also recommends against administration of newly prescribed cholinesterase inhibitors.


The guideline goes on to describe the nonpharmacologic prevention and treatment of postoperative delirium. It recommends that hospitals and healthcare systems have educational programs with frequent refresher sessions on delirium. It recommends that an interdisciplinary team implement a multicomponent nonpharmacologic intervention program.and follow that patient throughout the hospital course. It notes such interventions have reduced the incidence of delirium 30-40%. It stops short of recommending use of specialized hospital units, however, since the evidence is insufficient.


It goes on to describe the medical evaluation that should be undertaken once a patient is diagnosed as having delirium. It notes again that multicomponent interventions have been successful in reducing delirium duration and severity, length of stay, etc. but that it is not possible to conclude which specific component(s) are responsible.


If delirious patients are severely agitated or distressed and are considered a risk to self or others, judicious use of antipsychotics (at the lowest effective dose and for the shortest possible duration) may be considered. These should be used only when behavioral interventions have failed. It also emphasizes that benzodiazepines should not be used except where specifically indicated (such as patients undergoing withdrawal from alcohol or benzodiazepines).


We’ve discussed most of these issues more extensively in our many previous columns on delirium listed below. We’d again like to emphasize that we consider assessment for delirium risk one of the 3 most important elements of the preoperative evaluation (the other two being screening for frailty and screening for sleep apnea or other potential cause for post-operative opioid-induced respiratory depression). These simple screens can usually be done in the office by the surgeon or a geriatrician or primary care giver.



Some of our prior columns on delirium assessment and management:

·         October 21, 2008 “Preventing Delirium

·         October 14, 2009 “Managing Delirium

·         February 10, 2009 “Sedation in the ICU: The Dexmedetomidine Study

·         March 31, 2009 “Screening Patients for Risk of Delirium

·         June 23, 2009  More on Delirium in the ICU

·         January 26, 2010 “Preventing Postoperative Delirium

·         August 31, 2010 “Postoperative Delirium

·         September 2011 “Modified HELP Helps Outcomes in Elderly Undergoing Abdominal Surgery

·         December 2010 “The ABCDE Bundle

·         February 28, 2012AACN Practice Alert on Delirium in Critical Care

·         April 3, 2012 “New Risk for Postoperative Delirium: Obstructive Sleep Apnea

·         August 7, 2012 “Cognition, Post-Op Delirium, and Post-Op Outcomes

·         September 2013 “Disappointing Results in Delirium

·         October 29, 2013 “PAD: The Pain, Agitation, and Delirium Care Bundle

·         February 2014 “New Studies on Delirium

·         March 25, 2014 “Melatonin and Delirium

·         May 2014 “New Delirium Severity Score

·         August 2014 “A New Rapid Screen for Delirium in the Elderly

·         August 2014 “Delirium in Pediatrics

·         November 2014 “The 3D-CAM for Delirium







The American Geriatrics Society Expert Panel on Postoperative Delirium in Older Adults. Postoperative Delirium in Older Adults: Best Practice Statement from the American Geriatrics Society. Journal of the American College of Surgeons 2014; Published Online: November 14, 2014






Print “December 2014 American Geriatrics Society Guideline on Postoperative Delirium in Older Adults





Oxygen Should Be AVOIDed



In several of our prior columns on use of oxygen (see our Patient Safety Tips of the Week April 8, 2008 “Oxygen as a Medication” and January 27, 2009 “Oxygen Therapy: Everything You Wanted to Know and More!”) we have commented that in the past we often routinely gave oxygen to patients with myocardial infarction or stroke. But such use was more reflexive in nature and not evidence-based.


In our What’s New in the Patient Safety World columns for July 2010 “Cochrane Review: Oxygen in MI  and February 2012 “More Evidence of Harm from Oxygen” we discussed the lack of evidence to support the routine use of oxygen in the acute MI patient and the possible deleterious effects in these and some other cardiac patients.


Then in our March 2014 What’s New in the Patient Safety World column “Another Strike Against Hyperoxia” we noted a study showing that hyperoxia was independently associated with in-hospital death as compared with either normoxia or hypoxia in ventilated stroke patients admitted to ICU’s.


Such studies have called for large randomized controlled trials to answer the important questions about if and when to use oxygen in patients with stroke or MI. One such study, The Stroke Oxygen Study (SO2S) in the UK, was recently completed in stroke patients (see our June 17, 2014 Patient Safety Tip of the Week “SO2S Confirms Routine Oxygen of No Benefit in Stroke”) and showed no benefit of oxygen therapy in stroke patients who were not hypoxemic.


Now we finally also have the results of a randomized controlled trial of oxygen vs. no oxygen in patients with STEMI (S-T segment elevation myocardial infarction). Results of the Air Versus Oxygen in Myocardial Infarction (AVOID) study were just presented at the American Heart Association 2014 Scientific Sessions (Stub 2014). Patients with STEMI by EKG who had normal oxygen saturation were randomized in the pre-hospital transport system to receive either oxygen 8L/min or no supplemental oxygen. Those who received supplemental oxygen had larger infarct size by measurement of CPK (but not by troponin levels) and by cardiac MRI at 6 months. They also had a higher rate of recurrent myocardial infarction and an increase in frequency of cardiac arrhythmias. Mortality did not differ between the two groups but the study was not powered to demonstrate any difference in mortality. A much larger ongoing study in Sweden may be able to answer the question about impact on mortality. Thus the study showed supplemental oxygen therapy in patients with STEMI but without hypoxia increased early myocardial injury and was associated with larger myocardial infarct size assessed at six months.


As we’ve recommended before, hospitals need to look at their existing protocols (and actual practices) for managing a variety of medical conditions where oxygen use may be considered. How many of you have standardized order sets that directly (or indirectly by poor use of checkboxes) encourage inappropriate use of oxygen in MI or stroke patients? Going back to our Patient Safety Tips of the Week April 8, 2008 “Oxygen as a Medication” and January 27, 2009 “Oxygen Therapy: Everything You Wanted to Know and More!” we strongly support facilities doing audits of their oxygen practices. You’ll probably be surprised at the opportunities you uncover to improve practices (and save money at the same time!). And make sure your pre-hospital emergency response teams are aware of the results of the AVOID study.



Some of our prior columns on potential harmful effects of oxygen:


April 8, 2008 “Oxygen as a Medication

January 27, 2009 “Oxygen Therapy: Everything You Wanted to Know and More!

July 2010 “Cochrane Review: Oxygen in MI

February 2012 “More Evidence of Harm from Oxygen

March 2014 “Another Strike Against Hyperoxia

June 17, 2014 “SO2S Confirms Routine O2 of No Benefit in Stroke







Stroke Oxygen Study website




Stub D, Smith K, Bernard, S, et al. A randomised controlled trial of oxygen therapy in acute ST-segment elevation myocardial infarction: The Air Versus Oxygen in Myocardial Infarction (AVOID) study. American Heart Association 2014 Scientific Sessions; November 19, 2014; Chicago, IL







Print “December 2014 Oxygen Should Be AVOIDed





Another Procedure to Avoid Late in the Day or on Weekends



Add yet another procedure to the growing lists of procedures you don’t want done late in the day or on weekends. In our October 2014 What’s New in the Patient Safety World column “What Time of Day Do You Want Your Surgery?” we discussed issues related to laparoscopic cholecystectomies done after hours. In our September 2009 What’s New in the Patient Safety World column After-Hours Surgery – Is There a Downside?” we discussed adverse outcomes associated with doing certain types of orthopedic surgery after hours. We think the issues raised are significant to almost every type of surgery and probably other procedures as well.


So it should come as no surprise that some non-emergent procedures done in the cath lab or OR might also be problematic. Hsu and colleagues (Hsu 2014) demonstrated in a large, real-world population, that implantable cardioverter-defibrillator (ICD) recipients implanted in the afternoon/evening and on weekends/holidays more often experienced adverse events, particularly prolonged hospital stays. Those patients implanted in the afternoon or evening had an 8% higher likelihood of any complication and 29% higher likelihood of a prolonged hospital stay. In-hospital death, however, was not increased.


In our previous columns noted above (and the full list is at the end of today’s column) we’ve discussed many of the factors contributing to problems for cases done after hours or on weekends. Hsu and colleagues acknowledge that implantable cardioverter-defibrillator procedures performed later in the day and on weekends/holidays may be associated with adverse events due to a variety of factors including operator fatigue, handoffs, reduced staffing, and limited resource availability.


But keep in mind that this was not a randomized controlled trial. Rather it was a retrospective review of a real-world population. Even though they adjusted their analysis for a variety of factors, it is conceivable that there may be unrecognized patient-related factors that led to cases being done late in the day.


Some of the contributory factors may not be modifiable. However, others may be. For example, if the cardiac electrophysiologist or surgeon doing the implant perceives difficulty scheduling the procedure for the following morning (or has a conflict with his/her own schedule that next morning) he/she may push to do the procedure late on the current day. Maintaining scheduling flexibility to accommodate such cases the next day may be an important system fix.


Take a look at the experience with ICD implantation at your own hospital. Because Hsu’s data came from the National Cardiovascular Data Registry-ICD Registry™ you’ll likely find similar patterns at your hospital.




Some of our previous columns on the “weekend” and “after hours” effects:

·         February 26, 2008     Nightmares….The Hospital at Night

·         December 15, 2009   The Weekend Effect

·         July 20, 2010             More on the Weekend Effect/After-Hours Effect

·         October 2008             Hospital at Night Project

·         September 2009         After-Hours Surgery – Is There a Downside?

·         December 21, 2010   More Bad News About Off-Hours Care

·         June 2011                  Another Study on Dangers of Weekend Admissions

·         September 2011         Add COPD to Perilous Weekends

·         August 2012              More on the Weekend Effect

·         June 2013                  Oh No! Not Fridays Too!

·         November 2013         The Weekend Effect: Not One Simple Answer

·         August 2014              The Weekend Effect in Pediatric Surgery

·         October 2014             What Time of Day Do You Want Your Surgery?







Hsu JC, Varosy PD, Parzynski CS, et al. Procedure Timing as a Predictor of In-Hospital Adverse Outcomes from Implantable Cardioverter-Defibrillator Implantation: Insights from the NCDR®. Amer Heart J 2014; Published Online: October 25, 2014






Print “December 2014 Another Procedure to Avoid Late in the Day or on Weekends




Print “December 2014 What's New in the Patient Safety World (full column)

Print “December 2014 I-PASS Passes the Test

Print “December 2014 Surprise Central Lines

Print “December 2014 American Geriatrics Society Guideline on Postoperative Delirium in Older Adults

Print “December 2014 Oxygen Should Be AVOIDed

Print “December 2014 Another Procedure to Avoid Late in the Day or on Weekends




Print “December 2014 What's New in the Patient Safety World (full column in PDF version)










Tip of the Week Archive


What’s New in the Patient Safety World Archive