View as “PDF version”
One safety topic we’ve been largely remiss in
discussing is surgical smoke. Though a number of states have adopted
specific legislation regarding the dangers of surgical smoke, most regulatory
bodies and professional societies have been slow to adopt and enforce
guidelines on the issue. Perhaps one of the few positive aspects arising from
the COVID-19 pandemic has been increased attention to the dangers of aerosols
produced by a variety of surgical procedures, and that should include surgical
smoke.
In our July 28, 2020 Patient Safety Tip of
the Week “Electrosurgical
Safety” we did note that surgical smoke is a
concern any time electrosurgery is used. The smoke generated during
electrosurgical procedures can potentially contain viruses (such as HPV),
bacteria, cancer cells, hazardous chemicals, and other fine, particulate matter.
In the COVID-19 pandemic era, we’d also be concerned that coronavirus might
also be aerosolized in surgical smoke, though it had not yet been known whether
that happens (AORN
2020a).
It's recommended you use smoke evacuation systems and fit-tested surgical N95
masks during procedures in which electrosurgery is used. The AORN Go Clear
Award Program (AORN
2020b) has
numerous resources and recommendations about surgical smoke generated by
electrosurgery devices and any other type of device.
Limchantra 2019) just prior to the COVID-19 pandemic
acknowledged that surgical smoke is dangerous, but the severity of the risk has
yet to be determined and that no safe level is known at this point. It
recommended efforts be made to reduce and possibly eliminate smoke from the
operating room and that research into cost-effective forms of smoke evacuation
is necessary. It also noted the need for studies of respiratory and cancer
sequelae of exposure to operating room smoke in personnel who have had
long-term exposure to surgical smoke.
Surgical
smoke consists of chemical compounds in the gaseous phase along with particles of
cells, bacteria, and viruses. Viable bacteriophage has been found in surgical smoke,
and transmission of human papillomavirus from the patient to operating
personnel has occurred, even leading to laryngeal papillomatosis in an
operating room nurse. Volatile organic compounds (VOC’s) may also be found in
surgical smoke and may be impacted by medications the patient had been
receiving. There is even concern about the possibility of viable cancer cells
in surgical smoke.
The
review goes on to note that the type of device creating the surgical smoke may
also be relevant. Smoke produced by laser irradiation or harmonic scalpel is
relatively cold compared with electrocautery smoke. That may present a
biological hazard, because lower temperature plumes are expected to contain
more infectious material than high-temperature plumes. Laser plume has been found
to contain several potentially infectious components, such as viable
bacteriophages, viable cells, and virus particles, and is believed to have a
higher infectious potential than electrocautery smoke.
The
Limchantra review discusses the various methods of surgical smoke evacuation
that are in use currently, noting that they are all probably underused, and
also discusses methods that might be used in the future.
Though
the hazards of surgical smoke began to be described in the 1970’s, it wasn’t
until the late 1990’s that awareness of concerns became more widespread. An
excellent review by Ulmer in 2008 (Ulmer 2008) highlighted smoke production by
electrosurgical units, lasers, ultrasonic devices, and high-speed electrical
devices like bone saws, drills, and other high-speed electrical devices used to
dissect and resect tissue. The review included a discussion of components of
surgical smoke, including issues of particle size, chemical contents, and presence
of blood particles, viruses, and bacteria in the smoke particulate matter. It
also discussed how the surgical smoke is dispersed throughout the OR. It
discussed the potential health risks to OR personnel and patients. It went on
to discuss risk mitigation issues, including general OR ventilation, use of
high filtration surgical masks, wall suction to remove smoke, portable smoke
evacuation systems, and central smoke evacuation systems. It also discussed
surgical smoke evacuation and filtration during laparoscopic procedures.
Two
recent reviews in the nursing literature (Vortman 2020, Vortman 2021) also point out that surgical smoke exposure
has been equated to smoking 27 to 30 unfiltered tobacco cigarettes, and that perioperative
teams have reported twice as many respiratory health issues (headache, watery
eyes, cough, rhinitis, sore throat, sneezing, etc.) as the general public.
These two excellent articles discuss the economic, political, practical,
ethical and legal factors bearing on the issue of management of surgical smoke.
They discuss 3 policy options for dealing with the surgical
smoke issue:
Ultimately,
they recommend adoption of Option 2: individual states enact smoke evacuation
laws requiring facilities to adopt policies and procedures to evacuate surgical
smoke.
Vortman
and Thorlton (Vortman 2020) discuss the costs of surgical smoke
evacuation devices that may dissuade particularly smaller hospitals from
implementation but note that the costs related to adverse health effects on
staff may outweigh such costs. They also note that some surgeons have complained
of practical difficulties (noise, distraction, limited space) when using smoke
evacuation devices. They note other reasons reported for lack of use include a
misconception among surgeons that surgical smoke is harmless and that past
surgical smoke evacuation devices were loud and designed with bulky tubing.
AORN
(Association of periOperative Registered Nurses) for several years now has recommended
organizations provide a surgical smoke–free environment by using smoke evacuator
systems (AORN 2017). But other regulatory bodies and professional
societies have been slow to make firm recommendations on surgical smoke.
The American
College of Surgeons, in response to the COVID-19 pandemic, issued a statement “Covid-19:
Considerations for Optimum Surgeon Protection Before, During, and After Operation”
(ACS 2020) that states “Use smoke evacuator
when electrocautery is used.”
Somewhat
surprisingly, OSHA (The Occupational Safety and Health Administration), which requires
employers to provide a work environment free of recognized hazards that may
cause serious physical harm or death, does not have a specific standard addressing
inhalation hazards of surgical smoke exposure.
NIOSH
(National Institute for Occupational Safety and Health) supports and recommends
local exhaust ventilation (LEV) to control perioperative team exposure to surgical
smoke (NIOSH 2015) but, in a survey, found that only half of
respondents reported that LEV was always used during laser surgery and only 15%
reported LEV was always used during electrosurgery. The study also indicated
that control of surgical smoke in workplaces may not be a priority, with nearly
half of respondents reporting that they had never received training on the
hazards of surgical smoke and one-third said that LEV use was not part of their
workplace’s protocol. NIOSH also recommends general room ventilation in
addition to LEV to control healthcare workers’ exposure to surgical smoke.
Finally,
just this past December, The Joint Commission issued a Quick Safety Issue
“Alleviating the dangers of surgical smoke.” (TJC 2020) that has the following recommendations:
The
COVID-19 pandemic has raised concerns about any aerosol-generating procedure
(AGP) , not just those producing traditional “surgical smoke”. A number of
recent studies have tried to identify those AGP’s presenting a risk of respiratory
transmission that merits use of a higher grade of PPE (personal protective
equipment).
A recent viewpoint on aerosol-generating procedures (Klompas
2020)
does not discuss surgical smoke per se but does outline the 4 key factors in
respiratory transmission:
Certainly, in the OR where surgical smoke is
generated, the latter two factors (distance and duration) place OR personnel at
risk for respiratory transmission of pathogens and, undoubtedly, also the other
untoward elements present in surgical smoke.
In
the many studies on aerosol-generating procedures that have appeared since the
COVID-19 pandemic began, it is surprising that there is little or no mention of
the traditional surgical smoke generating procedures we’ve discussed above. A
systematic review (Jackson 2020) categorized aerosol-generating procedures
into 39 procedure groups, with comments on the strength of the evidence.
Another review of aerosol-generating procedures with respect to infective risk
to healthcare workers from SARS-CoV-2 does not even mention surgical smoke
producing procedures like electrocautery or procedures using laser or ultrasonic devices (Harding 2020).
One
excellent review (Howard 2020) does include laser procedures and
electrocautery in its discussion of aerosol-generating procedures. This review has
a nice discussion of the more advanced forms of PPE that must be used in the
higher risk aerosol-generating procedures. This includes elastomeric
respirators with various filters. Howard recommends that, for high-risk AGP’s,
respiratory protection above N95 should be considered. Options for this include
N-P 99 respirators, N-P 100 respirators, elastomeric respirators with filters
type N-P 99-100 level, PAPR, or CAPR. Additionally, fitted goggles should be
worn for eye protection; face shields are not adequate eye protection during
high-risk AGP’s.
Thamboo
et al. (Thamboo 2020) reviewed aerosol generating medical
procedures in otolaryngology and head and neck surgery. They specifically note
that HPV DNA can be present in the surgical smoke generated by CO2 lasers for
the treatment of (laryngeal) papillomatosis and warts. They also note studies
demonstrating the potential of virus transmission by surgical smoke produced by
electrocautery, though they note the evidence for actual viral transmission
following electrocautery is not strong. In addition to use of appropriate PPE,
they recommend that aerosol-generating procedures (AGP’s) be performed in
negative pressure rooms to minimize the risk of spread of contaminated
aerosols. They do not specifically comment on use of LEV (local exhaust
ventilation).
Orthopedic procedures are especially likely to generate not
only what is technically “surgical smoke” but also generate a variety of
aerosols. Sobti et al. (Sobti
2020)
reviewed the literature and concluded that most orthopedic procedures are
high-risk aerosol-generating procedures (AGP’s) and that, in the current era of
COVID-19 pandemic, there is a significant risk to the transmission of infection
to the OR staff. They note that conventional surgical masks do not offer
protection against high-risk AGP’s. For protection against airborne transmission,
appropriate masks should be used. These need proper fitting and sizing to
ensure full protection when used. But they do not discuss what measures should
be used to evacuate the aerosols from the OR environment. A recent article (Geevarughese
2020) on
aerosol-generating procedures (AGP’s) in orthopedics does include surgical
smoke that may accompany electrocauterization, laser procedures, and use of
ultrasonically activated devices like the harmonic scalpel, but also notes that
blood and irrigation fluid coming in close contact with high-speed instruments
get aerosolized. The authors categorize high-, moderate- and low-risk
procedures and provide recommendations for PPE (personal protective equipment)
for each category. Though the article does not mention LEV (local exhaust
ventilation), it does state that “high- and moderate-risk AGP’s should
preferably be performed in a negative pressure room with a minimum of 12 air
changes per hour, as it prevents dissemination outside the room. The exhaust
air is filtered through HEPA filters, which are capable of filtering
essentially all particles, including nanoparticles (<0.01 μm). The
number of team members exposed should be minimized, movement in and out of the
OR limited, only equipment and supplies required for the procedure should be
retained in the theatre, and a runner should be stationed outside the OR to
attend to additional supplies required.”
And,
while most of the literature on surgical smoke is aimed at ensuring the safety
of OR personnel, don’t forget that patients undergoing the procedures can also
be potentially exposed to many of the untoward elements contained in surgical
smoke.
The
time has come for all hospitals, ambulatory surgery centers, and any venue
performing procedures that generate surgical smoke to recognize this as a
legitimate issue and follow the recommendations in that recent Joint Commission
communication (TJC 2020).
References:
AORN.
(Association of periOperative Registered Nurses). Smoke and COVID-19 FAQs. AORN
2020
https://aorn.org/education/facility-solutions/aorn-awards/aorn-go-clear-award/faq
AORN.
(Association of periOperative Registered Nurses). AORN Go Clear Award Program.
Accessed July 2020
Limchantra
IV, Fong Y, Melstrom KA. Surgical Smoke Exposure in Operating Room Personnel: A
Review. JAMA Surg 2019; 154(10): 960-967
https://jamanetwork.com/journals/jamasurgery/fullarticle/2748067
Ulmer
BC. The Hazards of Surgical Smoke. AORN Journal 2008; 87(4):721-738
https://aornjournal.onlinelibrary.wiley.com/doi/abs/10.1016/j.aorn.2007.10.012
Vortman
R, Thorlton J. Empowering Nurse Executives to Advocate for Surgical Smoke–Free
Operating Rooms. Nurse Leader 2020; Published:November 20, 2020
https://www.nurseleader.com/article/S1541-4612(20)30283-4/fulltext
Vortman
R, McPherson S, Wendler MC. State of the Science: A Concept Analysis of
Surgical Smoke. AORN Journal 2021;. 113: 41-51
https://aornjournal.onlinelibrary.wiley.com/doi/10.1002/aorn.13271
AORN
(Association of periOperative Registered Nurses). Guideline Summary: Surgical
Smoke Safety. AORN Journal 2017; 105(5): 498-500
https://aornjournal.onlinelibrary.wiley.com/doi/abs/10.1016/j.aorn.2017.02.008
ACS (American
College of Surgeons). Covid-19: Considerations for Optimum Surgeon Protection
Before, During, and After Operation. ACS 2020; April 1, 2020
https://www.facs.org/covid-19/clinical-guidance/surgeon-protection
NIOSH
(National Institute for Occupational Safety and Health). NIOSH Study Finds
Healthcare Workers’ Exposure to Surgical Smoke Still Common. NIOSH 2015;
November 3, 2015
https://www.cdc.gov/niosh/updates/upd-11-03-15.html
TJC
(The Joint Commission). Quick Safety Issue 56: Alleviating the dangers of
surgical smoke. TJC 2020; December 2020
Klompas
M, Baker M, Rhee C. What Is an Aerosol-Generating Procedure? JAMA Surg 2020;
Published online December 15, 2020
https://jamanetwork.com/journals/jamasurgery/fullarticle/2774161
Jackson
T, Deibert D, Wyatt G, et al. Classification of aerosol-generating procedures:
a rapid systematic review. BMJ Open Respiratory Research 2020; 7: e000730.
https://bmjopenrespres.bmj.com/content/7/1/e000730
Harding
H, Broom A, Broom J. Aerosol-generating procedures and infective risk to
healthcare workers from SARS-CoV-2: the limits of the evidence. Journal of
Hospital Infection 2020; 105(4): 717-725 August 01, 2020
https://www.journalofhospitalinfection.com/article/S0195-6701(20)30277-2/fulltext
Howard
BE. High-Risk Aerosol-Generating Procedures in COVID-19: Respiratory Protective
Equipment Considerations. Otolaryngology–Head and Neck Surgery 2020; 163(1): 98-103
First Published May 12, 2020
https://journals.sagepub.com/doi/full/10.1177/0194599820927335
Thamboo
A, Lea J, Sommer DD, et al. Clinical evidence based review and recommendations
of aerosol generating medical procedures in otolaryngology – head and neck
surgery during the COVID-19 pandemic. J Otolaryngol Head & Neck Surg 2020; 49,
28 Published May 6, 2020
https://journalotohns.biomedcentral.com/articles/10.1186/s40463-020-00425-6#citeas
Sobti
A, Fathi M, Mokhtar MA, et al. Aerosol generating procedures in trauma and
orthopaedics in the era of the Covid-19 pandemic; What do we know? Surgeon
2020; [published online ahead of print, 2020 Aug 13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425761/
Geevarughese
NM, Ul-Haq R. Aerosol generating procedures in orthopaedics and recommended
protective gear. J Clin Orthop Trauma. 2020; [published online ahead of print,
2020 Aug 25]
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446649/
Print “PDF version”
http://www.patientsafetysolutions.com/