View as “PDF version”
Lots of things can
go wrong when hospital inpatients are transported to other areas of the
hospital (for example, to radiology, a lab, the OR, physical therapy, etc.).
We’ve done many columns (listed below) on the hazards of such intrahospital
transports. Our May 22, 2018 Patient Safety Tip of the Week “Hazardous
Intrahospital Transport” summarized the multiple issues encountered in such
transports.
But we.ve focused primarily on adult
inpatients in our prior columns. A new systematic review looked at adverse
events during intrahospital transport of critically ill children (Haydar
2019). They identified 40 full-text articles with
sufficient information about adverse events in
children during intrahospital transport. Studies were heterogeneous and the
incidence of adverse events varied widely between studies.
Respiratory and
airway events were the most common type of adverse event. Hypothermia
was common in infants. They also found instances of
emergent tracheostomy, pneumothorax, and cardiac arrest. One transport-associated
death was reported.
One hazard we have not commented upon
often enough in intrahospital transports is hypothermia. We did discuss
the risk of hypothermia in interhospital transfers (see our October 30, 2018 Patient Safety Tip of the
Week “Interhospital Transfers”).
But children, particularly infants, are especially prone to hypothermia.
In our January 7, 2020 Patient Safety Tip of the Week “Even More Concerns About MRI
Safety” we discussed a study that showed most children who undergo
MRI while under anesthesia experience hypothermia at some point during the
procedure (Cronin 2019).
Using MRI-compatible temperature monitoring, the researchers found that 63% of
patients less than 8 years of age exhibited hypothermia (median temperature
less than 36°C) at some point during MRI. Most instances of hypothermia
occurred early, particularly during anesthesia induction and prior to the
initiation of the MRI scan, and then improved during the scan. That was
ascribed to the fact that the scanning environment is typically kept cool, with
a low humidity, and heat loss to the surrounding environment typically occurs
after induction of anesthesia. Later, body temperature tends to increase during
the MRI scan secondary to MR radiofrequency heating. The researchers did not
find any increase in perianesthetic complications or
an impact on PACU length of stay. However, the study was limited to children
undergoing outpatient procedures. It is quite conceivable that sicker, more vulnerable
inpatients might be impacted by such hypothermia. The authors, therefore,
recommend interventions for these patients should be focused on maintaining
normothermia during the anesthesia induction and prior to initiation of the MRI
scan. MRI-compatible continuous temperature monitoring is important for
managing temperature for these anesthetized patients.
A recent study (Brozanski 2020); focused on keeping infants warm in the
perioperative period. While their interventions included prewarming the OR and
standardized practice to prevent intraoperative heat loss, they also included
establishing euthermia before transport to the operating room (OR) and
standardized practice for maintaining euthermia on transport to and from the
OR. Postoperative hypothermia decreased by 48%, from a baseline of 20.3% to
10.5% after implementation of these interventions. And, if your focus is on
preventing hypothermia, you obviously need to have a way of monitoring body
temperature.
Haydar et al. found that many
adverse events during intrahospital transport were deemed potentially
preventable. Two strategies stood out to potentially mitigate adverse
consequences: use of checklists and double checks.
Checklists are essential for patient safety during
intrahospital transports. Our many columns on the “Ticket to Ride”
checklist are listed at the end of today’s column. In our August 25, 2015 Patient Safety Tip of
the Week “Checklist
for Intrahospital Transport”
we discussed many factors contributing to incidents related to intrahospital
transports. These include equipment failures, oxygenation issues, battery/power
issues, and things like attention to patient hydration. And don’t forget the
problems that arise when sending diabetic patients off for substantial periods
of time (what to do with their insulin, planning for meals, etc.). We
refer you to a Netherlands study (Brunsveld-Reinders
2015) to actually see a good checklist they created for
intrahospital transports. The article also addresses transport team composition
(which may vary depending upon whether the patient is ventilated or on pressors or inotropes) and education/training needs for
members of the transport team.
A good “Ticket to Ride” type checklist for intrahospital
transport should cover all three phases of transport: pre-transport,
during-transport, and post-transport (Jarden 2010, Brunsveld-Reinders 2015)
We probably would not put as much weight on double checks at
do Haydar et al. Double checks in such situations are
often done in a perfunctory manner and the original and second person often
assume that any discrepancies will be picked up by the other person. If you
rely on double checks, they must done in a truly
independent manner. Probably the two most important items you would want to
double check are the oxygen supply and the battery charge on any portable
ventilator, ensuring that both are adequate for the anticipated duration of the
transport (plus an allowance for unanticipated duration).
Of course, staff accompanying the patient need to be
familiar with any equipment used during transport. We’d add that hospital
personnel on the receiving end also be familiar with the transport equipment.
That brings us to another thing we’d emphasize: the need for an appropriate handoff
prior to the and following the transport. Let’s say you are transporting a
critically ill child to the Radiology suite for a CT scan. You should discuss
with the radiology nurse or radiology staff whether your patient is on oxygen,
being ventilated, what sorts of medications are running in various lines, etc.
and discuss what events might be anticipated.
The literature suggests that the risk of incidents and
adverse events during transports is also related to the time duration of
the transport. Hence, events such as CT scanning tend to be associated with
more incidents because they require more time (PPSA 2005). For
example, the risk of running out of oxygen would be greater on longer
transports. You’ll recall that the original “Ticket to Ride” checklists were
created because of such oxygen depletions during transports.
Two key factors related to the risk of adverse events during
transport noted by Haydar et al. are the patient’s
underlying illness and degree of respiratory support. They noted that
mechanical ventilation was superior to manual ventilation in intubated
patients. Don’t forget that, in addition to checking to make sure the oxygen
supply will be adequate for the planned duration of the transport, to also
check that the battery charge on any portable ventilator will be sufficient for the duration of the transport.
And Haydar et al. stress the
importance of optimizing the patient’s physiological status prior to transport.
They also recommend having experienced clinicians accompany the patient.
The destination of the transport may also be important.
Probably the most common destination for intrahospital transports is the
Radiology suite. We refer you back to our October 22, 2013 Patient Safety Tip of the Week “How
Safe Is Your Radiology Suite?”
for a comprehensive discussion of all the things that can go wrong when
a patient is sent to the radiology suite. With children, you also need to consider they may require sedation
or anesthesia for their imaging study or procedure and plan for appropriate
monitoring. Keep in mind that some effect of sedation may still be present
during the trip back to the ICU or floor so you must be prepared for an event
such as respiratory depression.
Do you want a parent to accompany the
child? That may be a good idea in some cases, since it may help allay any
anxiety the child has. But even if a parent is not accompanying the child, it
is a good idea to keep the parent(s) in the loop. A checklist for transport of
pediatric surgery patients at the Medical Center of Central Georgia (Nakayama 2012) included an item for verification of family
location and actually included their cell phone number and home telephone number
on the checklist.
Lastly, there is one question that we
see consistently overlooked: does the patient really need the test/procedure
for which you are transporting him/her?. When we do a root cause analysis on any
event related to a procedure, test, imaging, or transport, the first question
we usually ask is “Was the procedure necessary?”. You’d be surprised how often
we hear waffling on that question. In
our August 25, 2015 Patient Safety Tip of the Week “Checklist for Intrahospital Transport” we
noted a commentary by Shirley and Bion (Shirley
2004) which noted the
importance of making the decision about
whether to transport a patient. They note that such decision “should be
made by a senior, experienced and appropriately skilled clinician who remains
responsible for the conduct of the transfer”. The potential benefits of a transport must be critically weighed
against the potential risks.
Beckmann et al. (Beckmann 2004) cite
studies suggesting that care plans were changed for patients after such
transports in only 24-39% of cases. So one really
needs to consider how likely the imaging study (or other procedure the patient
may be going for) is really going to change patient management.
In our August 25,
2015 Patient Safety Tip of the Week “Checklist
for Intrahospital Transport”
we discussed “the 5 W’s” of
intrahospital transport (Day 2010). The first “W” is “Why” or “Why does the patient need to
leave the ICU for the procedure?”. Important questions to ask here are “Are
there bedside alternatives for the procedure? And “Is the patient’s condition
stable?”. If the patient is considered unstable, the next questions are “Is the
transport for a lifesaving intervention?” and “Is the transport to a diagnostic
test pivotal to decision for emergent plan?”. Day’s second “W” is “Who”. This included both who is the
patient and who will be caring for the patient and, importantly, will a handoff
be required? The third “W” is “What”
and refers to equipment, airway, ventilator support, circulatory support, and
special considerations (eg. spine stability,
intracranial pressure monitors, etc.). Under the fourth “W” for “When” Day discusses considerations
about coordinating with the timing of the test or procedure (eg. fasting or withholding anticoagulants for procedures),
renal protective protocols for contrast-using procedures, and collaborating
with other healthcare providers. The last “W” is for “Where” which includes details about the route to be taken, issues
regarding MRI safety if going for MRI, etc.
Intrahospital transports, whether involving critical care
patients or others, need to be undertaken with considerable planning. You need
to ensure that you have systems in place to ensure the safety of the patients
and tools like the “Ticket to Ride” checklists to facilitate safe transports.
Do you know the rate
of adverse events during intrahospital transports is in your hospital? What
sorts of issues have you found in your RCA’s (root cause analyses) of such
events? Do you have formal policies and procedures for intrahospital
transports? Do you utilize a “Ticket to Ride” type checklist before, during and
after such transports? Do you have ones that specifically apply to pediatric
patients? If not, that’s another great topic for FMEA (Failure Mode and Effects
Analysis).
Some of our prior
columns on the “Ticket to Ride” concept:
Some of our prior
columns on patient safety issues in the radiology suite:
References:
Haydar B, Baetzel
A, Elliott A, et al. Adverse Events During Intrahospital Transport of
Critically Ill Children. A Systematic Review. Anesthesia & Analgesia 2019;
Published ahead of print December 16, 2019
Cronin JA, Shen ., Rana S, et al.
Association Between Magnetic Resonance Imaging in Anesthetized Children and
Hypothermia. Pediatric Quality & Safety 2019, 4(4): e181
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708655/
Brozanski BS, Piazza AJ, Chuo J,
et al. STEPP IN: Working Together to Keep Infants Warm in the Perioperative
Period. Pediatrics 2020; March 2020: e20191121
Brunsveld-Reinders AH, Arbous M, Kuiper SG, de Jonge E. A comprehensive method to develop a checklist
to increase safety of intra-hospital transport of critically ill patients.
Critical Care 2015; 19: 214 (7 May 2015)
http://www.ccforum.com/content/19/1/214
Jarden RJ, Quirke S. Improving
safety and documentation in intrahospital transport: development of an
intrahospital transport tool for critically ill patients. Intensive Crit
Care Nurs 2010; 26: 101-107
Pennsylvania Patient Safety Authority. Patient Safety
Advisory. Is CT a High-Risk Area for Patient Transport? PA PSRS Patient Saf Advis 2005; 2(3): 11-12
http://patientsafety.pa.gov/ADVISORIES/Pages/200509_11.aspx
Nakayama DK, Lester SS, Rich DR, et al. Quality improvement
and patient care checklists in intrahospital transfers involving pediatric
surgery patients. Journal of Pediatric Surgery 2012; 47(1): 112-118
https://www.jpedsurg.org/article/S0022-3468(11)00900-6/fulltext
Shirley PJ, Bion JF.
Intra-hospital transport of critically ill patients: minimising
risk. Intensive Care Medicine 2004; 30(8): 1508-1510
http://icmjournal.esicm.org/journals/abstract.html?v=30&j=134&i=8&a=2293_10.1007_s00134-004-2293-6&doi=
Beckmann U, Gillies DM, Berenholtz
SM, Wu AW, Pronovost P. Incidents relating to the intra-hospital transfer of
critically ill patients: An analysis of the reports submitted to the Australian
Incident Monitoring Study in Intensive Care. Intensive Care Medicine 2004;
30(8): 1579-1585
http://icmjournal.esicm.org/journals/abstract.html?v=30&j=134&i=8&a=2177_10.1007_s00134-004-2177-9&doi=
Day D. Keeping Patients Safe During Intrahospital Transport.
Crit Care Nurse 2010; 30: 18-32
http://ccn.aacnjournals.org/content/30/4/18.full
Print “PDF version”
http://www.patientsafetysolutions.com/